HEAT EMITTER GUIDE FOR DOMESTIC HEAT PUMPS

Issue 2.0
This guide has been approved by the Steering Group of the MCS.

This guide was prepared by the MCS Working Group 12 ‘Heat Emitter Guide’.

REVISION OF MICROGENERATION GUIDANCE DOCUMENTS

Microgeneration Guidance Documents will be revised by issue of revised editions or amendments. Details will be posted on the website at www.microgenerationcertification.org.

Technical or other changes which affect the requirements for the approval or certification of the product or service will result in a new issue. Minor or administrative changes (e.g. corrections of spelling and typographical errors, changes to address and copyright details, the addition of notes for clarification etc.) may be made as amendments.

The issue number will be given in decimal format with the integer part giving the issue number and the fractional part giving the number of amendments (e.g. Issue 3.2 indicates that the document is at Issue 3 with 2 amendments).

Users of this guide should ensure that they possess the latest issue and all amendments.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 4
FOREWORD ... 5

1. TEMPERATURE STAR RATING .. 6

2. EXAMPLES FOR EXISTING RADIATOR SYSTEMS WITH A LOW TEMPERATURE HEAT PUMP 7
 2.1 Calculating the Temperature Star Rating of an existing radiator system 7
 2.2 Reducing fabric and ventilation heat losses ... 7
 2.3 Upgrading the existing radiators .. 7
 2.4 Reducing fabric and ventilation heat losses and upgrading the existing radiators 7
 2.5 Change Heat Pump to a Very High Temperature Heat Pump .. 7

3. GUIDANCE TABLE .. 8
 3.1 Using the Guidance Table ... 8
 3.2 Key to Guidance Table ... 8
 3.3 Guidance Table ... 9
 3.4 Likely SPF Table ... 10

4. EXAMPLES OF SYSTEMS DESIGNED USING THE GUIDANCE TABLE 11
 4.1 Benefits of reducing fabric and ventilation heat losses ... 11
 4.2 Radiators (Standard and Skirting) .. 11
 4.3 Fan-assisted radiators ... 11
 4.4 Screed underfloor heating .. 11
 4.5 Aluminium panel underfloor heating .. 11

5. NOTES ON THE ASSUMPTIONS USED TO CREATE THIS GUIDE ... 12
ACKNOWLEDGEMENTS

The Heat Emitter Guide Working Group would like to give thanks and acknowledgements to the participating members of the original Heat Emitter Guide. These are: BEAMA, Energy Saving Trust (EST), Department of Energy and Climate Change (DECC), Institute of Domestic Heating and Environmental Engineers (IDHEE), Heat Pump Association (HPA), Ground Source Heat Pump Association (GSHPA), Heating & Hot water Industry Council (HHIC), and BEAMA Underfloor Heating (BEAMA Underfloor Heating is the new name for he Underfloor Heating Manufacturers Association).
FOREWORD

Heat pumps can provide high-efficiency, low-carbon heat for dwellings. Their performance is optimised if low-temperature heat emitters are used for heat distribution in the house, so this guide aims to help you select an emitter type and operating temperature which will result in high efficiency and low running costs.

The guide uses a Temperature Star Rating to indicate how efficient the proposed system is likely to be. More efficient systems are given a higher number of stars. The maximum is 6 stars. More stars are given when lower heat emitter temperatures are used because the heat pump is able to operate more efficiently.

The guide can be used for systems with existing radiators or to design a new heat emitter system. A flow chart has been designed to help you through the process for an individual room. This process should be repeated for all of the heated rooms in the dwelling; the heat pump operating SPF will be limited by the worst performing room.

The Guidance Table on page 9 is annotated to help you achieve the most suitable design for the room/dwelling. Several examples are also included in the guide to illustrate the advantages of improving the energy efficiency by reducing fabric and ventilation heat loss and achieving lower emitter temperatures.

The emitter guide is not a detailed design tool, but is intended to stimulate a proper review of the dwelling-specific heat load and heat emitter design, leading to optimised performance and low running costs.
1. TEMPERATURE STAR RATING

Start

- Calculate the heat loss for each room (in W) Heat loss calculations according to BS 12831 are recommended.

Are you designing a new heating system or looking to use the existing one?

- New: Use the tables on pages 9 and 10 to help design a new system

Existing

- You need to work out the Temperature Star Rating
 - Does the system have radiators?
 - Yes: Determine the rated output of the existing radiators at a mean water to air temperature difference of 50°C using manufacturers’ tables. See note.
 - No: Use the tables on pages 9 and 10 to help design a new system

- Divide the rated output by the room heat loss to determine the Oversize Factor

Use the chart and the calculated Oversize Factor to determine the Temperature Star Rating for that room:

Use the existing radiator examples on page 7 to demonstrate the impact of reducing heat loss and increasing radiator output

Proceed with installation

- Would you like a higher Temperature Star Rating?
 - Yes: The Temperature Star Rating can be improved by reducing the room’s fabric and ventilation heat loss; increasing the rated output of the heat emitter by adding or replacing radiators; or by switching to a different emitter type.
 - No: Do you want to redesign the heat emitter system?

Use the Guidance Table and examples on pages 9, 10 and 11 to investigate reducing the fabric and ventilation heat loss and switching emitter type and specification
2. EXAMPLES FOR EXISTING RADIATOR SYSTEMS WITH A LOW TEMPERATURE HEAT PUMP

2.1 Calculating the Temperature Star Rating of an existing radiator system

An example of a poorly-insulated room has been adapted from CIBSE’s Domestic Heating Design Guide. The room is assumed to be in London (design outside air temperature = -1.8°C) and initially has single glazing. The heating is assumed to be used continuously.

- Room heat loss: 1671W
- Size of existing radiator: 1600mm L, 700mm H, 103mm D (double panel)
- Existing radiator rated output at MW-AT = 60°C: 2349W
- Existing radiator rated output at MW-AT = 50°C: 2349 x 0.825 = 1938W

Calculate the Oversize Factor and look up the Temperature Star Rating on the chart.

- Oversize factor: 1938/1671 = 1.2
- Temperature Star Rating: [no stars]
- Radiator flow temperature: > 60°C

To operate at these temperatures, a specialist heat pump would be required. You must therefore take action to ensure satisfactory operation. The examples on this page demonstrate the impact of reducing heat losses and increasing radiator output. Use the Guidance Table on page 9 to redesign the emitter system.

2.2 Reducing fabric and ventilation heat losses

Reducing the fabric and ventilation heat loss is an efficient way of increasing the Temperature Star Rating because it reduces energy consumption and improves the system efficiency – always consider reducing heat losses when making changes to a house.

If the external walls have cavity wall insulation added, the windows are replaced with A-rated double glazing, 50mm of underfloor insulation is added, and the room is carefully draught-proofed, the example room’s Temperature Star Rating is improved:

- Improved room heat loss: 976W
- New oversize factor: 1938/976 = 2.0
- New Temperature Star Rating: 2 stars

2.3 Upgrading the existing radiators

Upgrading the existing radiator to one that has a higher rated output is another way of increasing the Temperature Star Rating:

- Size of new radiator: 1600mm L, 700mm H, 135mm D (this is a double convector with the same frontal area as the existing radiator)
- New radiator rated output: 3269W
- New oversize factor: 3269/1671 = 2.0
- New Temperature Star Rating: 2 stars
- Radiator flow temperature: 55°C
- Likely GSHP heating SPF: 3.1
- Likely ASHP heating SPF: 2.4

2.4 Reducing fabric and ventilation heat losses and upgrading the existing radiators

The two previous examples can be combined to produce a more efficient installation:

- Improved room heat loss: 976W
- New radiator rated output: 3269W
- New oversize factor: 3269/976 = 3.4
- New Temperature Star Rating: 4 stars
- Radiator flow temperature: 45°C
- Likely GSHP heating SPF: 3.7
- Likely ASHP heating SPF: 3.0

2.5 Change Heat Pump to a Very High Temperature Heat Pump

A Very High Temperature Heat Pump can be considered as the heat source to achieve suitable temperature star ratings from the chart on page 10 at the high radiator flow temperatures as shown in the examples 2.1, 2.2 and 2.3 above.
3. GUIDANCE TABLE

3.1 Using the Guidance Table

Divide the room heat loss by the room floor area to identify the room specific heat loss band on the far left of the table that should be used in the design process.

Use the colour coding (which identifies suitable options) and different emitter types, together with the Temperature Star Rating, the heating circuit flow temperatures and the likely space heating SPF’s to select an emitter type and specification that achieves the desired operating conditions.

Is the emitter an underfloor heating system?

- **No**
 - Read off the Oversize Factor and multiply it by the room heat loss to determine the required rated output (in W).
 - Use the manufacturers’ data to select an emitter capable of achieving the required rated output.

- **Yes**
 - Read off the maximum pipe spacing (PS) to be used in the design.

Proceed with installation.

3.2 Key to Guidance Table

- **REDUCE FABRIC AND VENTILATION HEAT LOSS** – System cannot perform at the design parameters stated; consider reducing heat loss and/or load sharing with other emitter types.

- **CONSIDER MEASURES TO REDUCE FABRIC AND VENTILATION LOSS** – System can perform at these design conditions but emitter sizes are likely to be excessive.

- **CAUTION** – System can perform at these design conditions with extra consideration on the emitter and heat pump design sought from the specialist designer/manufacturer.

- **GO AHEAD** - System can perform at the stated efficiencies with the selected emitter design.

- **Underfloor Pipe Spacing** – PS≤150 means UFH pipes should be spaced at 150mm or less to achieve the design condition.

- **Oversize Factor** – multiply the room heat loss (in W) by the Oversize Factor to determine the required emitter output with a mean water to air temperature difference of 50°C. Oversize Factor is the same as a Heat Transfer Multiplier.
3.3 Guidance Table

<table>
<thead>
<tr>
<th>Room, Specific heat loss</th>
<th>Heating Flow temperature AFTER LEAVING BLENDING VALVE (if blending valve added, add 5degC to heat pump flow temp.) / degC</th>
<th>Oversize factor for other emitters</th>
<th>Underfloor Heating - SCREED</th>
<th>Underfloor Heating - ALUMINIUM PANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 35</td>
<td></td>
<td>P≤300</td>
<td>P≤300</td>
<td>P≤300</td>
</tr>
<tr>
<td>36 - 40</td>
<td>4.3</td>
<td>6.8</td>
<td>5.0</td>
<td>P≤300</td>
</tr>
<tr>
<td>41 - 45</td>
<td>3.1</td>
<td>4.3</td>
<td>3.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>46 - 50</td>
<td>2.4</td>
<td>3.1</td>
<td>2.6</td>
<td>P≤300</td>
</tr>
<tr>
<td>51 - 55</td>
<td>2.0</td>
<td>2.4</td>
<td>2.1</td>
<td>P≤300</td>
</tr>
<tr>
<td>56 - 60</td>
<td>1.70</td>
<td>1.90</td>
<td>1.70</td>
<td>P≤300</td>
</tr>
<tr>
<td>61 - 65</td>
<td>1.40</td>
<td>1.8</td>
<td>1.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>Room, Specific heat loss 30 to 50 W/m²</td>
<td></td>
<td>P≤100</td>
<td>REDUCE HEAT LOSS</td>
<td>REDUCE HEAT LOSS</td>
</tr>
<tr>
<td>up to 35</td>
<td>4.3</td>
<td>6.8</td>
<td>5.0</td>
<td>P≤300</td>
</tr>
<tr>
<td>36 - 40</td>
<td>3.1</td>
<td>4.3</td>
<td>3.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>41 - 45</td>
<td>2.4</td>
<td>3.1</td>
<td>2.6</td>
<td>P≤300</td>
</tr>
<tr>
<td>46 - 50</td>
<td>2.0</td>
<td>2.4</td>
<td>2.1</td>
<td>P≤300</td>
</tr>
<tr>
<td>51 - 55</td>
<td>1.70</td>
<td>1.90</td>
<td>1.70</td>
<td>P≤300</td>
</tr>
<tr>
<td>56 - 60</td>
<td>1.40</td>
<td>1.6</td>
<td>1.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>61 - 65</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>P≤300</td>
</tr>
<tr>
<td>Room, Specific heat loss 50 to 80 W/m²</td>
<td></td>
<td>P≤100</td>
<td>REDUCE HEAT LOSS</td>
<td>REDUCE HEAT LOSS</td>
</tr>
<tr>
<td>up to 35</td>
<td>4.3</td>
<td>6.8</td>
<td>5.0</td>
<td>P≤300</td>
</tr>
<tr>
<td>36 - 40</td>
<td>3.1</td>
<td>4.3</td>
<td>3.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>41 - 45</td>
<td>2.4</td>
<td>3.1</td>
<td>2.6</td>
<td>P≤300</td>
</tr>
<tr>
<td>46 - 50</td>
<td>2.0</td>
<td>2.4</td>
<td>2.1</td>
<td>P≤300</td>
</tr>
<tr>
<td>51 - 55</td>
<td>1.70</td>
<td>1.90</td>
<td>1.70</td>
<td>P≤300</td>
</tr>
<tr>
<td>56 - 60</td>
<td>1.40</td>
<td>1.6</td>
<td>1.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>61 - 65</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>P≤300</td>
</tr>
<tr>
<td>Room, Specific heat loss 80 to 100 W/m²</td>
<td></td>
<td>P≤100</td>
<td>REDUCE HEAT LOSS</td>
<td>REDUCE HEAT LOSS</td>
</tr>
<tr>
<td>up to 35</td>
<td>4.3</td>
<td>6.8</td>
<td>5.0</td>
<td>P≤300</td>
</tr>
<tr>
<td>36 - 40</td>
<td>3.1</td>
<td>4.3</td>
<td>3.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>41 - 45</td>
<td>2.4</td>
<td>3.1</td>
<td>2.6</td>
<td>P≤300</td>
</tr>
<tr>
<td>46 - 50</td>
<td>2.0</td>
<td>2.4</td>
<td>2.1</td>
<td>P≤300</td>
</tr>
<tr>
<td>51 - 55</td>
<td>1.70</td>
<td>1.90</td>
<td>1.70</td>
<td>P≤300</td>
</tr>
<tr>
<td>56 - 60</td>
<td>1.40</td>
<td>1.6</td>
<td>1.5</td>
<td>P≤300</td>
</tr>
<tr>
<td>61 - 65</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>P≤300</td>
</tr>
<tr>
<td>Room, Specific heat loss 100 to 120 W/m²</td>
<td></td>
<td>P≤100</td>
<td>REDUCE HEAT LOSS</td>
<td>REDUCE HEAT LOSS</td>
</tr>
<tr>
<td>up to 35</td>
<td>4.3</td>
<td>6.8</td>
<td>5.0</td>
<td>P≤100</td>
</tr>
<tr>
<td>36 - 40</td>
<td>3.1</td>
<td>4.3</td>
<td>3.5</td>
<td>P≤100</td>
</tr>
<tr>
<td>41 - 45</td>
<td>2.4</td>
<td>3.1</td>
<td>2.6</td>
<td>P≤100</td>
</tr>
<tr>
<td>46 - 50</td>
<td>2.0</td>
<td>2.4</td>
<td>2.1</td>
<td>P≤100</td>
</tr>
<tr>
<td>51 - 55</td>
<td>1.70</td>
<td>1.90</td>
<td>1.70</td>
<td>P≤100</td>
</tr>
<tr>
<td>56 - 60</td>
<td>1.40</td>
<td>1.6</td>
<td>1.5</td>
<td>P≤100</td>
</tr>
<tr>
<td>61 - 65</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>P≤100</td>
</tr>
<tr>
<td>Room, Specific heat loss 120 to 150 W/m²</td>
<td></td>
<td>P≤100</td>
<td>REDUCE HEAT LOSS</td>
<td>REDUCE HEAT LOSS</td>
</tr>
<tr>
<td>up to 35</td>
<td>4.3</td>
<td>6.8</td>
<td>5.0</td>
<td>P≤100</td>
</tr>
<tr>
<td>36 - 40</td>
<td>3.1</td>
<td>4.3</td>
<td>3.5</td>
<td>P≤100</td>
</tr>
<tr>
<td>41 - 45</td>
<td>2.4</td>
<td>3.1</td>
<td>2.6</td>
<td>P≤100</td>
</tr>
<tr>
<td>46 - 50</td>
<td>2.0</td>
<td>2.4</td>
<td>2.1</td>
<td>P≤100</td>
</tr>
<tr>
<td>51 - 55</td>
<td>1.70</td>
<td>1.90</td>
<td>1.70</td>
<td>P≤100</td>
</tr>
<tr>
<td>56 - 60</td>
<td>1.40</td>
<td>1.6</td>
<td>1.5</td>
<td>P≤100</td>
</tr>
<tr>
<td>61 - 65</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>P≤100</td>
</tr>
</tbody>
</table>

Changing the floor covering on UFH can reduce the required emitter temperature. Changing the emitter specification can reduce the flow temperature and therefore increase SPF. Reducing fabric and/or ventilation heat loss can move a room up to the next specific heat loss band, making it easier to achieve a good SPF. Reducing the floor covering on UFH can reduce the required emitter temperature. Changing the emitter type can enable the emitter to operate at a lower temperature.
3.4 Likely SPF Tables

Important notes:

These tables are presented as a generic aid to ensure that the correct information is being provided within the heat emitter design. Competent heating system designers will be able to provide site-specific solutions to meet your exact requirements. These tables cover space heating only - domestic hot water is not included.

3.4.1 Low temperature heat pump likely SPFs

<table>
<thead>
<tr>
<th>Temperature Star Rating</th>
<th>Heating Flow temperature LEAVING HEAT PUMP PRIOR TO BLENDING VALVE / degC</th>
<th>LOW TEMP HEAT PUMP Likely SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest efficiency</td>
<td>up to 35</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>36 - 40</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>41 - 45</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>46 - 50</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>51 - 55</td>
<td>3.1</td>
</tr>
<tr>
<td>Lowest Efficiency</td>
<td>56 - 60</td>
<td>2.8</td>
</tr>
</tbody>
</table>

3.4.2 High temperature heat pump likely SPFs

<table>
<thead>
<tr>
<th>Temperature Star Rating</th>
<th>Heating Circuit Flow temperature LEAVING HEAT PUMP PRIOR TO BLENDING VALVE / degC</th>
<th>VERY HIGH TEMP HEAT PUMP Likely SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest efficiency</td>
<td>up to 35</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>36 - 40</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>41 - 45</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>46 - 50</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>51 - 55</td>
<td>2.5</td>
</tr>
<tr>
<td>Lowest Efficiency</td>
<td>56 - 60</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>61 - 65</td>
<td>2.5</td>
</tr>
</tbody>
</table>
4. EXAMPLES OF SYSTEMS DESIGNED USING THE GUIDANCE TABLE

4.1 Benefits of reducing fabric and ventilation heat losses

The poorly-insulated example room introduced on the front page has the following heat loss and dimensions:

- Original room heat loss: 1671W
- Room size: 4.9m x 2.7m = 13.2m²
- Room specific heat loss: 1671/13.2 = 126 W/m²
- Room specific heat loss band: 120 to 150 W/m²

A higher Temperature Star Rating can be achieved if the room specific heat loss (in W/m²) is reduced. This is indicated in the Design Table by the different colour coding for different specific heat loss bands. Reducing the room heat loss as in the example on page 7, moves the room into a lower room specific heat loss band.

- Improved room heat loss: 976W
- Room specific heat loss: 976/13.2 = 74W/m²
- Room specific heat loss band: 50 to 80 W/m²

These examples design standard radiator, fan-assisted radiator and underfloor heat distribution systems that achieve the maximum recommended Temperature Star Rating for this improved room.

4.2 Radiators (Standard and Skirting)

The Oversize Factor required to achieve the maximum recommended Temperature Star Rating is circled on the Guidance Table for a radiator system in a room with a specific heat loss in the 50 to 80 W/m² band.

- Room specific heat loss band: 50 to 80 W/m²
- Emitter type: Radiators
- Design Temperature Star Rating: 4 stars
- Design Radiator Flow Temperature: 45°C
- Likely GSPH heating SPF: 3.7
- Likely ASHP heating SPF: 3.0
- Required Oversize Factor: 3.1
- Required rated output: 976 x 3.1 = 3024W
- Manufacturer: Myson Premier HE PM 70 DC 160 (or equivalent)
- Size: 1600mm L, 700mm H, 135mm D
- Manufacturer's Rating: 3249W

OR

- Manufacturer: Myson Premier HE PM 70 DC 80 (or equivalent)
- Size: 2 No. 800 mm L, 700mm H, 135mm D
- Manufacturer's Rating: 2 x 1605 = 3210W

4.3 Fan-assisted radiators

A fan-assisted radiator will have a higher heat output than a standard radiator the same size. You can therefore achieve a higher Temperature Star Rating without the emitter becoming too large for a room with a fixed specific heat loss. The Oversize Factor required to achieve the maximum recommended Temperature Star Rating is also circled on the Guidance Table for a fan-assisted radiator system.

- Room specific heat loss band: 50 to 80 W/m²
- Emitter type: Fan-assisted radiators
- Design Temperature Star Rating: 5 stars
- Design Radiator Flow Temperature: 40°C
- Likely GSPH heating SPF: 4.1
- Likely ASHP heating SPF: 3.4
- Required Oversize Factor: 3.1
- Required radiator output: 976 x 3.1 = 3024W
- Manufacturer: Jaga Strada DBE Type 11 (or equivalent)
- Size: 400mm L, 950mm H, 118mm D
- Manufacturer's Rating: 3114W

OR

- Manufacturer: Jaga Strada DBE Type 11 (or equivalent)
- Size: 2 No. 800 mm L, 650mm H, 118mm D
- Manufacturer's Rating: 2 x 1534 = 3068W

4.4 Screed underfloor heating

Depending on the floor construction and covering, an underfloor heat distribution system may be able to achieve an even lower heating circuit flow temperature - and therefore higher Temperature Star Rating - in the same room specific heat loss band.

The maximum pipe spacing required to achieve the highest recommended Temperature Star Rating is circled on the Guidance Table for a screed underfloor heating distribution system with a tile covering.

- Room specific heat loss band: 50 to 80 W/m²
- Emitter type: Screed underfloor
- Floor covering: Tile
- Design Temperature Star Rating: 6 stars
- Design Radiator Flow Temperature: 35°C
- Likely GSPH heating SPF: 4.3
- Likely ASHP heating SPF: 3.6
- Maximum underfloor pipe spacing: 100mm

4.5 Aluminium panel underfloor heating

An aluminium panel underfloor heating distribution system with a tile covering cannot achieve such a high Temperature Star Rating. The maximum pipe spacing required to achieve the highest recommended Temperature Star Rating is circled on the Guidance Table.

- Room specific heat loss band: 50 to 80 W/m²
- Emitter type: Aluminium panel underfloor
- Floor covering: Tile
- Design Temperature Star Rating: 4 stars
- Design Radiator Flow Temperature: 45°C
- Likely GSPH heating SPF: 3.7
- Likely ASHP heating SPF: 3.0
- Maximum underfloor pipe spacing: 150mm
5. NOTES ON THE ASSUMPTIONS USED TO CREATE THIS GUIDE

Heat Pump likely Seasonal Performance Factor (SPF) is calculated for space heating only in accordance with the following notes and assumptions:

a) The heat pump is sized to meet 100% of the space heating load in line with MIS 3005 including adjustments for cyclic operation and thermal bridging and is the only heat source used in the dwelling.

b) No allowance has been made for losses from heat pump cycling and heating system i.e. buffer vessels and distribution pipe work.

c) Leeds is used for weather data

d) Provision of domestic hot water is not included.

e) Room temperature is based on European Winter standard 21°C operative temperature per BS EN ISO 7730.

f) Weather compensation is used.

g) GSHP SPF H2 is the SCOP calculated in accordance with EN14825.

h) GSHP 0/35 = 3.5 (MCS minimum thresholds).

i) The GSHP ground array is designed with a minimum heat pump entry water temperature of 0°C.

j) A ground circulation pump is included.

k) The SPF values for ASHP are 0.7 less than for GSHP, which is consistent with the default values in SAP.

l) 100W has been added for the electrical consumption of the heating circulation pumps.

m) Heating flow temperature used to select the SPF of the system in the heat emitter guide is for the temperature leaving the heat pump prior to any blending valves at peak design conditions (i.e. at the lowest external design temperature). Heating circuit flow temperature in the emitter guide is for the temperature used to size the emitter after any blending valves.

n) The temperature difference across the heat emitters is fixed at 1/7th of the emitter circuit flow temperature and the system pipework is sufficient to allow the correct flow rate at the design conditions.

o) The heat emitter control system meets current building regulation requirements.

p) Installation of screed UFH has floor insulation to BS EN 1264 or building regulations, - whichever is the greater – with UFH and finishing floor laid over.

q) Installation of Aluminium-plated UFH has floor insulation to BS EN 1264 or building regulations, whichever is the greater with UFH pipework laid on top of a proprietary aluminium plate system with no air gaps between aluminium plates, chipboard flooring and finishing floor.

r) Performance of UFH is calculated, using a 16mm pipe, including downward loss and intermittent use allowance, according to BS EN 1264 and is shown using differing floor coverings with resistance values of Carpet = 0.15m2K/W (or 1.5 TOG), Wood = 0.10 m2K/W, Tile = 0.00 m2K/W.

s) Required performance of Fan Coils, Fan Convectors and Radiators is expressed as an Oversize Factor or Heat transfer Multiplier to determine the required manufacturer’s catalogued output per BS EN 442 at a mean water to air temperature difference of 50°C. The exponents used in the heat transfer equation to calculate the Heat Transfer Multipliers are 1.3 for Radiators (Standard and Skirting), 1.1 for Fan Coils and 1.0 for Fan Convectors. The room temperature used to calculate the Heat transfer Multipliers is fixed at 21°C.

t) For Skirting Heating, sufficient allowance should be added to the manufacturer’s outputs to allow for back losses at external walls and/or areas of thermal bridging. This allowance will vary depending on the age and/or nature of the building and may also require further precautions. In all cases, this advice should be sought from the manufacturer.
AMENDMENTS ISSUED SINCE PUBLICATION

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>Amendment Details:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First Issue as MCS 021 – Heat Emitter Guide</td>
<td>16/12/2013</td>
</tr>
<tr>
<td>2.0</td>
<td>Reformat of whole document. Updates to:</td>
<td>21/11/2014</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layout of Notes to the assumptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes to the Notes to the assumptions a; g; k; m; r</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revision Emitter Guidance Table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addition Low Temp SPF Table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addition Very High Temp SPF Table</td>
<td></td>
</tr>
</tbody>
</table>